Nonlinear Periodic Systems with thep-Laplacian: Existence and Multiplicity Results

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Article Nonlinear Periodic Systems with the p-Laplacian:Existence and Multiplicity Results

We study second-order nonlinear periodic systems driven by the vector p-Laplacian with a nonsmooth, locally Lipschitz potential function. Under minimal and natural hypotheses on the potential and using variational methods based on the nonsmooth critical point theory, we prove existence theorems and amultiplicity result. We conclude the paper with an existence theorem for the scalar problem, in ...

متن کامل

Existence and multiplicity results for nonlinear boundary value problems

This paper studies the existence of positive solutions for a class of boundary value problems of elliptic degenerate equations. By using bifurcation and fixed point index theories in the frame of approximation arguments, the criteria of the existence, multiplicity and nonexistence of positive solutions are established. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition

We study the nonlinear elliptic boundary value problem Au = f(x, u) in Ω , Bu = g(x, u) on ∂Ω , where A is an operator of p−Laplacian type, Ω is an unbounded domain in R with non-compact boundary, and f and g are subcritical nonlinearities. We show existence of a nontrivial nonnegative weak solution when both f and g are superlinear. Also we show existence of at least two nonnegative solutions ...

متن کامل

Existence of Periodic Solutions of p(t)-Laplacian Systems

In this paper, by using the least action principle in critical point theory, we obtain some existence theorems of periodic solutions for p(t)-Laplacian system  d dt (|u̇(t)|p(t)−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ] u(0)− u(T ) = u̇(0)− u̇(T ) = 0, which generalize some existence theorems. 2010 Mathematics Subject Classification: 34C25, 35A15

متن کامل

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2007

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2007/80394